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Helicoidal instability of a scroll vortex in three-dimensional reaction-diffusion systems
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We study the dynamics of scroll vortices in excitable reaction-diffusion systems analytically and numeri-
cally. We demonstrate that intrinsic three-dimensional instability of a straight scroll leads to the formation of
helicoidal structures. This behavior originates from the competition between the scroll curvature and unstable
core dynamics. We show that the obtained instability persists even beyond the meander core instability of the
two-dimensional spiral wave.@S1063-651X~98!06310-7#

PACS number~s!: 47.54.1r, 47.20.Hw, 82.40.Ck, 87.22.As
n
qu

-

e
io
n

ro
ir
o

-
de
,

ru

u
at
s
te

ic
a

ex
m

ic
a
in
s

ow
f
on

de

s.
s.
s

a
ta-
d

m
n-
opf

ity
re-

the

d of
ta-

m-
f

s a
t
r

n-

a-

is
Spiral waves arising in diverse physical, chemical, a
biological systems are now one of the paradigms of none
librium dynamical phenomena@1#. Examples include the
Belousov-Zhabotinsky~BZ! reaction@2# and catalytic oxida-
tion of CO on Pt substrates@3#, concentration waves in colo
nies of aggregating amoebae@4#, waves in cardiac tissue@5#,
and many others. These seemingly unrelated phenom
share a common feature: they often allow for a descript
within the framework of two-component reaction-diffusio
type systems, for which spiral solutions are generic.

The three-dimensional analog of a spiral wave is a sc
vortex, which can be represented by translating the sp
wave along the third direction. Thus the point singularity
a two-dimensional spiral wave~tip! develops into a line sin-
gularity ~vortex filament!. The dynamics of the vortex fila
ments in reaction-diffusion systems has attracted a great
of attention@6,7# in connection with sudden heart fibrillation
where it is believed that scroll and ring vortices play a c
cial role @8,9#. Extensive numerical simulations@6–8# and
recent experiments on a gel-immobilized BZ reaction@10,11#
show that in a wide range of parameters the scrolls are
stable and may assume helicoidal or even more complic
dynamic configurations. However, the theoretical analy
performed by Keener predicts an ultimate collapse of vor
rings and stability of straight vortex filaments@12#. This con-
clusion was drawn on the basis of multiscale analysis, wh
shows that a vortex ring is similar to an elastic line with
positive line tension. The persistence of nontrivial vort
configurations and turbulence in reaction-diffusion syste
was attributed to a negative line tension of the filament@6#.

In this paper we demonstrate, on the basis of numer
and analytical calculations, that the formation of helicoid
vortices can be related to the intrinsic three-dimensional
stability of a straight scroll, caused by a nontrivial respon
of the filament core to a bending of the filament. We sh
that the limit of this instability, resulting in the formation o
spontaneous helicoidal vortices, goes beyond the corresp
ing two-dimensional core-meander instability.

The dynamics of a scroll vortex can be consistently
scribed by the two-component reaction-diffusion system
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wheree is a small positive parameter, andd5Dv /Du is the
ratio of diffusion coefficients of the variablesv andu. The
functions f (u,v) andg(u,v) are chosen so as to make Eq
~1! and~2! excitable@1#. In a wide range of parameters Eq
~1! and ~2! have a spiral wave solution in two dimension
and a scroll vortex in three dimensions.

Let us derive the equation of motion for the core of
weakly curved scroll vortex subject to the meandering ins
bility @2,13#. In two dimensions this instability was studie
both via numerical simulations of the system~1! and~2!, and
using the numerical solution of the linearized proble
@14,15#. Recently it was proven that the spiral interface u
dergoes a core-meander instability via a supercritical H
bifurcation, as the diffusion coefficient of the slow fieldd
decreases@16#. The mechanism of the meandering instabil
in a certain parameter limit has been elaborated on in a
cent work@17#.

The core meander was described by five equations for
frequency, coordinates, and the velocity of the spiral tip@15#.
These equations can be considerably simplified if, instea
the spiral tip, one considers the instant center of spiral ro
tion. At the threshold of instability one obtains a single co
plex Landau-type equation for the ‘‘complex’’ velocity o
the rotation centerĈ5cx1 icy , wherecx,y are the compo-
nents of the velocity:

] tĈ5aĈ2buĈu2Ĉ. ~3!

Here a and b are complex coefficients,a5a11 ia2 , b
5b11 ib2 , that have to be determined numerically. Fora1
,0 the symmetry center is stable, and the spiral make
pure rotation. Whena1 becomes positive, the fixed poin
solution of Eq. ~3! loses stability, and the rotation cente
itself performs a circular motion, which implies the mea
dering~composite rotation! of the spiral tip@18#. As follows
from Eq. ~3!, the absolute value of the velocity of the rot
tion center, in the saturated meandering regime, isC0

5Aa1 /ub1u, and the corresponding rotation frequency
v05a22a1b2 /b1 .
4556 © 1998 The American Physical Society
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Consider now a three-dimensional weakly curved sc
~the curvaturek in the third dimension is much smaller tha
the local curvature of the spiral front!. In this limit one
expands the Laplacian in Eq.~1! as follows: ¹2'¹2D

2

2kN•¹, where¹2D
2 is the Laplacian in the cross sectio

and N is the unit vector pointing toward the center of th
filament curvature. Therefore the curvature in the third
mension plays the role of an advective field directed alonN
and causing the drift of the filament@19#. To lowest order,
the curvaturek enters into the equation of motion~3! lin-
early:

] tĈ5aĈ2agk1•••, ~4!

where g5g11 ig2 is a ~complex! constant which can be
determined numerically from two-dimensional simulatio
@19# or analytically in a large core limit@17#.

Equation~4! readily implies the short-wavelength inst
bility of a straight filament. Indeed, for an almost straig
filament parallel to thez axis, the curvature vectorkN is
simply (xzz,yzz). UsingĈ5] tx̂, wherex̂5x1 iy , we obtain
from Eq. ~4!, for a periodic perturbation of the filamen
x̂(z); exp@l(k)t1ikz#, that l25a(l1gk2). The latter
equation has the following unstable solution:

l~k!5
a

2
1Aa2

4
1agk2. ~5!

Equation~5! represents the eigenvalue of the linearized pr
lem ~4! and is valid only for slightly curved filaments, i.e
for small wave numbersk. If this near-threshold instability
saturates, the saturated structure corresponds to the mos
stable mode, which implies the formation of stable helicoi
vortices.

By analogy with the vortex filaments in the comple
Ginsburg-Landau equation~CGLE! @20#, we can expect that
for k.0, the growth rate of the obtained three-dimensio
instability, Re@l(k)#, substantially exceeds that of the tw
dimensional meandering instability, Re@l(0)#5Re@a#. In
that case the filament curvature plays a destabilizing rol
the dynamics of the filament. To analyze the stability, o
can find the coefficientsa andg from the dynamics of the
two-dimensional system~1! and~2!, and then substitute them
into Eq. ~5!.

To determinea and g numerically, we have simulate
Eqs.~1! and~2! in two dimensions using the EZ-spiral cod
of Barkley @21#. We have chosen Barkley’s model with th
functions f (u,v)5u(u21)@u2uth(v)# andg(u,v)5u2v,
whereuth(v)5(v1b)/a. To determine numericallya, b,
andg, one should start with an unstable rigidly rotating s
ral, which is not available in numerical simulations. To ove
come this difficulty, we used the following approach. W
started with a spiral with already developed meander. T
we applied alocalized control technique, developed in Ref.
@22#, to turn the spiral motion to a pure rotation around
symmetry center. Following Ref.@22#, we applied apinning
sourceto Eq. ~2!, in the form of a localized inhibiting term
2m h(r 2r 0), wherer 0 is the coordinate of the domain cen
ter. Herem plays the role of acontrol parameterand is
governed by the equation
ll
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] tm52a1m1b1@v~r 0!2v0#, ~6!

wherev0 is the expected value of the slow field at the spi
center, anda1 , b1 are coefficients that should be proper
chosen. We have elaborated the controlling technique by
lowing v0 to vary adiabatically~slowly compared tom) as

] tv05a2m1b2@v~r 0!2v0#, ~7!

with another pair of coefficientsa2 , b2 . In this way, we
have obtained a purely rotating spiral with the parame
values corresponding to a meandering regime. The fi
value of the control parameter was as small asm51024,
which made the source term added to Eq.~2! a small pertur-
bation. After ‘‘switching off’’ the control~settingm50), we
allow the linear meander instability to develop.

In order to find the constanta, we fitted the trajectory of
the spiral tip to the developing meander, in the formx(t)
5x01x1 sin (v1t1f1)1x2 exp (a1t) sin (a2t1f2), where x0
is the average position of the spiral tip,v1 is the main spiral
rotation frequency, anda5a11 ia2 . The same fitting was
carried out fory(t). Thus we have retrieved the motion o
the center of spiral rotational symmetry. The coordinates
the center,xc andyc , as functions of time are given in Fig
1. We have found that, for the set of parameters given in
caption to Fig. 1,a1'0.012 anda2'0.336. To find the
constantg we have applied a homogeneous advective field
Eq. ~1!, along thex axis, as we have done in Ref.@19#. Then
g is determined from fitting the spiral tip trajectory to th

FIG. 1. Coordinates of spiral rotation center as functions
time, in the regime of linear development of meandering instabil
Parameters of Barkley’s model area50.66, b50.01, e51/50.
System size is 10310, number of grid points is 81381. Time step
dt'0.0016.

FIG. 2. Three-dimensional filament with the saturated insta
ity. The system size is 10310340, number of grid points is 81
3813320. Other parameters are the same as in Fig. 1. The in
perturbation is of the third harmonics, with the wave numberk
'0.47.
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meandering in the above form with an additional te
g1Et(g2Et), in the expression forx(t)@y(t)#, due to the
drift of the spiral. The result forg is g1'1.312 andg2
'0.154. In principle, it is easy to obtain the value of t
parameterb by matching the spiral center trajectory to th
saturated meander. However, we do not do it because
not important for the studied mechanism of the instability

We have performed numerical simulations of the thr
dimensional equations~1! and ~2!. We have studied the be
havior of an almost straight scroll. We have prepared a tw
dimensional purely rotating~unstable! spiral, with the
parameter values in the meandering regime, using the el
rated controlling technique described above, and translat
along the third dimension to build an initial scroll. Then,
periodic perturbation; exp@ikz# has been applied. Th
three-dimensional plot of the helix, obtained as the resul
the instability saturation, is given in Fig. 2. In Fig. 3 we ha
plotted the real and imaginary parts of the eigenvaluel ver-
susk, both for the theoretical prediction given by Eq.~5!,
and for the results of the simulations. As we have predic
the observed instability of the filament with initial perturb
tion of a finitek appears to be substantially stronger than
two-dimensional core meander instability (k50). We have
also tried initial conditions other than purely periodic, a

FIG. 3. The real~a! and imaginary~b! parts of the eigenvalue
l(k) of the three-dimensional instability obtained analytica
~solid line! and numerically~dashed line!. The system parameter
are the same as in Fig. 2.
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have always found a saturated helix. Almost periodic init
conditions have been mainly used to cut CPU time~the tran-
sient from random initial conditions is very long!.

As we can see from Fig. 3, thek→0 asymptotics of
Re@l# and Im@l# obtained numerically are well matched b
our theoretical prediction. Ask increases, however, the sma
curvature approximation used for the derivation of Eq.~5! no
longer works, and the prediction becomes invalid. This
why we see the divergence of the theoretical curves from
numerical ones for largerk.

We have also studied numerically the dynamics of fi
ments in the space of parametersa andb of Barkley’s model
@21#. We have performed the stability analysis of the h
monic with the growth rate near the maximal one@see Fig.
3~a!#. In Fig. 4 we plot the bifurcation line of the obtaine
three-dimensional instability together with that of the co
meander instability. We see that the curvature of the filam
enhances its instability, so that it is unstable even in a
main of thea-b plane, for which the two-dimensional spira
is stable.

In conclusion, we have demonstrated that the intrin
three-dimensional instability of a straight scroll leads to t
formation of stable helicoidal structures. We have shown t
persistent curved vortex configurations are not necessa
related to a ‘‘negative line tension’’ of the filament, bu
originate from the underdamped core dynamics. Our curr
analysis is restricted to untwisted scrolls. We expect t
twisted scrolls are unstable even in a wider space of
parameters, and exhibit in general even more violent dyn
ics. Helicoidal structures with twist were observed recen
in a gel-immobilized BZ reaction@11#. The twist was gener-
ated by an external temperature gradient along the sc
axis. The helicoidal instability was observed above spec
value of the twist and disappeared when the temperature
dient ~and, therefore, the twist! was removed. Presumably
by tuning the parameters of the BZ reaction, one may
proach the limit of the intrinsic three-dimensional instabili

FIG. 4. Bifurcation lines of two-dimensional~meander! instabil-
ity ~solid line! and three-dimensional instability~dashed line! in the
plane a-b of Barkley’s model parameters. The wave numberk
'0.63 of the initial perturbation corresponds to the fourth harm
ics, near the maximal growth rate of the instability, according
Fig. 3~a!. Other parameters are the same as in Fig. 3.
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for untwistedscrolls. We can also speculate that the helic
dal instability of scroll vortices in large aspect ratio reactio
diffusion systems is one of the mechanisms that supp
more complex vortex configurations and drives turbul
states.
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