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Helicoidal instability of a scroll vortex in three-dimensional reaction-diffusion systems
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We study the dynamics of scroll vortices in excitable reaction-diffusion systems analytically and numeri-
cally. We demonstrate that intrinsic three-dimensional instability of a straight scroll leads to the formation of
helicoidal structures. This behavior originates from the competition between the scroll curvature and unstable
core dynamics. We show that the obtained instability persists even beyond the meander core instability of the
two-dimensional spiral wavg¢S1063-651X98)06310-7

PACS numbe(s): 47.54:+r, 47.20.Hw, 82.40.Ck, 87.22.As

Spiral waves arising in diverse physical, chemical, and dv=206eVa+g(u,v), 2)
biological systems are now one of the paradigms of nonequi-
librium dynamical phenomenfl]. Examples include the

Ec?raogfs gvo-zohnatF)’ct)téﬁ)g?ath{g]aaggggt[azn]t;rt]iccj)r? ?/;[/213/25 i%xé%?c')_ ratio of diffusion coefficients of the variablesandu. The
nies of agareqatin amoebb{é waves in cardiac tissué] functionsf(u,v) andg(u,v) are chosen so as to make Egs.
ggregating ' ' rEl) and(2) excitable[1]. In a wide range of parameters Egs.

and many others. These seemingly unrelated phenome ) and (2) have a spiral wave solution in two dimensions
share a common feature: they often allow for a description X

within the framework of two-component reaction-diffusion and a scroll vortex in three dimensions.
. . PC . Let us derive the equation of motion for the core of a
type systems, for which spiral solutions are generic.

. : . : eakly curved scroll vortex subject to the meandering insta-
The three-dimensional analog of a spiral wave is a scrol[gI

. ) . bility [2,13]. In two dimensions this instability was studied
vortex, which can be _repr_esented by “a”?'a“ng the.Sp'r%oth via numerical simulations of the systéin and(2), and
wave allong the third Q|rect|0n._ Thus the point smgularl.ty 0fusing the numerical solution of the linearized broblem
a two_—d|menS|on_aI spiral wawip) de\{elops into a line sin- [14,15. Recently it was proven that the spiral interface un-
gularity (vortex filamen). The dynamics of the vortex fila- diargoes a core-meander instability via a supercritical Hopf
ments in reaction-diffusion systems has attracted a great de

. . . - - Bifurcation, as the diffusion coefficient of the slow fiei
of atten_tlc_)n[6,7_] in connection with su_dden h_eart fibrillation, decreasefl6]. The mechanism of the meandering instability
where it is believed that scroll and ring vortices play a cru-

cial role [8,9]. Extensive numerical simulatiori§—8 and " & certain parameter limit has been elaborated on in a re-

recent experiments on a gel-immobilized BZ reacfib®,11] cent work[17]. . . .
) : The core meander was described by five equations for the
show that in a wide range of parameters the scrolls are un . : :
ok . requency, coordinates, and the velocity of the spiral 1.
stable and may assume helicoidal or even more compllcatefiﬁ . . S
) : ) ; .These equations can be considerably simplified if, instead of
dynamic configurations. However, the theoretical analysg . . . . .
. . he spiral tip, one considers the instant center of spiral rota-
performed by Keener predicts an ultimate collapse of vorte>%. . . . .
. o ; . ; ion. At the threshold of instability one obtains a single com-
rings and stability of straight vortex filaments2]. This con- | ; “ » ;
; ) ) . ._pblex Landau-type equation for the “complex” velocity of
clusion was drawn on the basis of multiscale analysis, whict? _ N s
shows that a vortex ring is similar to an elastic line with ath€ rotation Ce”te_cfcxﬂcy* wherec, , are the compo-
positive line tension. The persistence of nontrivial vortexNents of the velocity:
configurations and turbulence in reaction-diffusion systems
was attributed to a negative line tension of the filané&nt . . P
In this paper we demonstrate, on the basis of numerical 3C=aC~p|C[°C. &)
and analytical calculations, that the formation of helicoidal
vortices can be related to the intrinsic three-dimensional inHere « and 8 are complex coefficientso=a+ia,, B
stability of a straight scroll, caused by a nontrivial response= 8, +i8,, that have to be determined numerically. For
of the filament core to a bending of the filament. We show<0 the symmetry center is stable, and the spiral makes a
that the limit of this instability, resulting in the formation of pure rotation. Whern; becomes positive, the fixed point
spontaneous helicoidal vortices, goes beyond the correspongdelution of Eq.(3) loses stability, and the rotation center
ing two-dimensional core-meander instability. itself performs a circular motion, which implies the mean-
The dynamics of a scroll vortex can be consistently de-dering(composite rotationof the spiral tip[18]. As follows
scribed by the two-component reaction-diffusion system  from Eq. (3), the absolute value of the velocity of the rota-
tion center, in the saturated meandering regime,Cis
oo, fuw) =Ja,/|B4], and the corresponding rotation frequency is
du=eViu+ ——, () _
€ wo=ay—a1f32/B;.

wheree is a small positive parameter, adD, /D, is the
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Consider now a three-dimensional weakly curved scroll ' ' ' '
(the curvaturex in the third dimension is much smaller than
the local curvature of the spiral frontin this limit one 01 F —_— 0 i
expands the Laplacian in Edl) as follows: Vzwng
—kN-V, whereV3; is the Laplacian in the cross section,

and N is the unit vector pointing toward the center of the Y
filament curvature. Therefore the curvature in the third di- o
mension plays the role of an advective field directed alNng s
and causing the drift of the filameht9]. To lowest order,
the curvaturex enters into the equation of motig@) lin-
early:
A 2 -0.1 - , : .
C=aC—ayk+---, (4) 0 50 100

o . Time

where y=vy;+ivy, is a (complex constant which can be _ _ _ _
determined numerically from two-dimensional simulations FIG. 1. Coordinates of spiral rotation center as functions of
[19] or analytically in a large core lim{t17]. time, in the regime of linear development of meandering instability.

Equation(4) readily implies the short-wavelength insta- Parameters of Barkley’s model a@=0.66, b=0.01, e=1/50.
bility of a straight filament. Indeed, for an almost straight System size is 1810, number of grid points is 8481. Time step
filament parallel to thez axis, the curvature vectokN is dt~0.0016.
simply (X,5.,Y,,). UsingC= 4,x, wherex=x+iy, we obtain
from Eq. (4), for a periodic perturbation of the filament
x(2) ~ exp[A(Kt+ikz], that N2=a(\+ vk?). The latter wherev is the expected value of the slow field at the spiral

diu=—agu+bqlv(rg)—vel, (6)

equation has the following unstable solution: center, andh;, b, are coefficients that should be properly
chosen. We have elaborated the controlling technique by al-
a a? lowing v to vary adiabatically(slowly compared tqu) as
)\(k)=§+ Z‘Fa’ykz. (5)
L?tvozazluﬁi‘ bz[v(ro)_vo], (7)

Equation(5) represents the eigenvalue of the linearized prob-
lem (4) and is valid only for slightly curved filaments, i.e., With another pair of coefficienta,, b,. In this way, we
for small wave numberk. If this near-threshold instability have obtained a purely rotating spiral with the parameter
saturates, the saturated structure corresponds to the most (f@lues corresponding to a meandering regime. The final
stable mode, which implies the formation of stable helicoidavalue of the control parameter was as smallzas 107%,
vortices. which made the source term added to E2).a small pertur-
By analogy with the vortex filaments in the complex bation. After “switching off” the control(settingu.=0), we
Ginsburg-Landau equatidiCGLE) [20], we can expect that, allow the linear meander instability to develop.
for k>0, the growth rate of the obtained three-dimensional In order to find the constant, we fitted the trajectory of
instability, Re A (k)], substantially exceeds that of the two- the spiral tip to the developing meander, in the fox(t)
dimensional meandering instability, Re(0)]=Re[a]. In  =Xg+ X1 SiN (wt+ ¢1)+X; €xXp (aqt) Sin (ast+ ), where X,
that case the filament curvature plays a destabilizing role ifs the average position of the spiral tip; is the main spiral
the dynamics of the filament. To analyze the stability, ongotation frequency, and=a;+ia,. The same fitting was
can find the coefficientar and y from the dynamics of the carried out fory(t). Thus we have retrieved the motion of
two-dimensional systerfl) and(2), and then substitute them the center of spiral rotational symmetry. The coordinates of
into Eq. (5). the centerx, andy., as functions of time are given in Fig.
To determinea and y numerically, we have simulated 1. We have found that, for the set of parameters given in the
Egs.(1) and(2) in two dimensions using the EZ-spiral code caption to Fig. 1,a;~0.012 anda,~0.336. To find the
of Barkley[21]. We have chosen Barkley’s model with the constanty we have applied a homogeneous advective field to
functionsf(u,v)=u(u—1)[u—uy(v)] andg(u,v)=u—v, EQq.(1), along thex axis, as we have done in R¢19]. Then
whereu,,(v)=(v+b)/a. To determine numerically, 8, v is determined from fitting the spiral tip trajectory to the
and vy, one should start with an unstable rigidly rotating spi-
ral, which is not available in numerical simulations. To over-
come this difficulty, we used the following approach. We
started with a spiral with already developed meander. Then |
we applied docalized control techniquedeveloped in Ref.
[22], to turn the spiral motion to a pure rotation around its
symmetry center. Following Ref22], we applied ginning FIG. 2. Three-dimensional filament with the saturated instabil-
sourceto Eq. (2), in the form of a localized inhibiting term ity The system size is 2010x 40, number of grid points is 81
—mh(r—rg), wherer is the coordinate of the domain cen- x81x320. Other parameters are the same as in Fig. 1. The initial
ter. Here u plays the role of acontrol parameterand is  perturbation is of the third harmonics, with the wave numker
governed by the equation ~0.47.
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12 ——=— Simulations s ] ~0.63 of the initial perturbation corresponds to the fourth harmon-

ics, near the maximal growth rate of the instability, according to
Fig. 3(a). Other parameters are the same as in Fig. 3.

have always found a saturated helix. Almost periodic initial
. conditions have been mainly used to cut CPU tife tran-
sient from random initial conditions is very lopng

As we can see from Fig. 3, thk—0 asymptotics of
0.0 : L : ! : Re[\] and Im[\] obtained numerically are well matched by

0.0 0.5 10 15 our theoretical prediction. Als increases, however, the small
curvature approximation used for the derivation of Ej.no

FIG. 3. The reala) and imaginary(b) parts of the eigenvalue longer works, and the prediction becomes invalid. This is
A(k) of the three-dimensional instability obtained analytically why we see the divergence of the theoretical curves from the
(solid line) and numerically(dashed ling The system parameters numerical ones for largek.
are the same as in Fig. 2. We have also studied numerically the dynamics of fila-

ments in the space of parametarandb of Barkley’s model

[21]. We have performed the stability analysis of the har-
meandering in the above form with an additional termmonic with the growth rate near the maximal dmee Fig.
v1Et(y,Et), in the expression fok(t)[y(t)], due to the 3(a)]. In Fig. 4 we plot the bifurcation line of the obtained
drift of the spiral. The result fory is y;~1.312 andy, three-dimensional instability together with that of the core-
~0.154. In principle, it is easy to obtain the value of the meander instability. We see that the curvature of the filament
parameterB by matching the spiral center trajectory to the enhances its instability, so that it is unstable even in a do-
saturated meander. However, we do not do it because it imain of thea-b plane, for which the two-dimensional spiral
not important for the studied mechanism of the instability. is stable.

We have performed numerical simulations of the three- In conclusion, we have demonstrated that the intrinsic
dimensional equation€l) and (2). We have studied the be- three-dimensional instability of a straight scroll leads to the
havior of an almost straight scroll. We have prepared a twoformation of stable helicoidal structures. We have shown that
dimensional purely rotating(unstabl¢ spiral, with the persistent curved vortex configurations are not necessarily
parameter values in the meandering regime, using the elabeelated to a “negative line tension” of the filament, but
rated controlling technique described above, and translated d@riginate from the underdamped core dynamics. Our current
along the third dimension to build an initial scroll. Then, a analysis is restricted to untwisted scrolls. We expect that
periodic perturbation~ exp[ikz] has been applied. The twisted scrolls are unstable even in a wider space of the
three-dimensional plot of the helix, obtained as the result oparameters, and exhibit in general even more violent dynam-
the instability saturation, is given in Fig. 2. In Fig. 3 we haveics. Helicoidal structures with twist were observed recently
plotted the real and imaginary parts of the eigenvaluger-  in a gel-immobilized BZ reactiofil1]. The twist was gener-
susk, both for the theoretical prediction given by E&), ated by an external temperature gradient along the scroll
and for the results of the simulations. As we have predictedaxis. The helicoidal instability was observed above specific
the observed instability of the filament with initial perturba- value of the twist and disappeared when the temperature gra-
tion of a finitek appears to be substantially stronger than thedient (and, therefore, the twistwas removed. Presumably,
two-dimensional core meander instabilitgy=€0). We have by tuning the parameters of the BZ reaction, one may ap-
also tried initial conditions other than purely periodic, andproach the limit of the intrinsic three-dimensional instability
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for untwistedscrolls. We can also speculate that the helicoi- We are grateful to R. Goldstein, A. Pertsov, and S.-Y.
dal instability of scroll vortices in large aspect ratio reaction-Chen for illuminating discussions. The work of I. A. was
diffusion systems is one of the mechanisms that supportsupported by the U.S. Department of Energy under Contract
more complex vortex configurations and drives turbulentNo. W-31-109-ENG-38 and by the NSF, Office of STC, un-

states. der Contract No. DMR91-20000.
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